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Timeline

The schedule for the labs is as follows:

Week Lab

1 Lab 1 Introduction to Vivado & Simple ALU

2 Lab 2 Register File

3 Lab 2 Register File

4 Lab 3 Instruction Fetch Stage

5 Lab 3 Instruction Fetch Stage

6 Lab 4 Instruction Decode Stage

7 Lab 5 Execution Stage

8 Lab 5 Execution Stage

9 Spring Break

10 Lab 6 Memory

11 Lab 7 Write Back

12 Project 1 Complete MIPS

13 Project 1 Complete MIPS

14 Project 2 Programming MIPS

15 Project 2 Programming MIPS

iii



iv



Submission Guidelines

These instructions apply to all submissions in the course

1. Everything must be in a PDF, except code

2. You must include all of the required items for full credit, make it look professional

3. Everything must be typed and proofread. NOTHING HANDWRITTEN WILL BE ACCEPTED
FOR POINTS

4. Submit all code to MyCourses

5. Submit grading sheets to MyCourses appended to the back of the report or worksheet for that
exercise (scan it in). They must be signed by the lab instructor or a TA to get any credit on
the exercise

6. Submit the worksheets and reports to MyCourses

7. All entries not submitted by the beginning of the next lab are considered late, unless otherwise
specified

8. DO NOT ZIP YOUR FILES.

9. If you have any questions, email ALL TAs for your section
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Exercise 1 Introduction to Vivado & Simple ALU

Introduction

This exercise will detail the basic functionality of the Xilinx Vivado Design Suite. This software
suite provides an integrated development environment (IDE) for the design, synthesis, and imple-
mentation of custom designs for reconfigurable hardware. The students will learn how to create
a custom design from source, simulate it, synthesize it, implement it, and load it onto a Basys3
FPGA. These objectives will be met by first completing a tutorial for a 4-bit ALU supporting two
operations. The design will be expanded to support three additional operations and 32-bit width
in a future exercise.

Procedure

1. Follow the Xilinx Vivado Tutorial in Appendix A to start the design for a partial ALU

2. To create the partial ALU, create a component for each of the operations in Table 1.1 and assign
them to the corresponding opcode in the top-level ALU design. Make sure that each component
is declared with generic bit width and is instantiated in the ALU with a width of 32 bits. Ensure
that the following 4-bit opcodes are used. While only five operations will be supported now,
this will allow many more operations to be added in later exercises.

Table 1.1: Operations

Opcode Operation

1000 Logical OR

1010 Logical AND

1011 Logical XOR

1101 Shift Right Logical (SRL)

1110 Shift Right Arithmetic (SRA)

3. Write a testbench for the ALU, similar to those provided in the tutorial. It should spot-check
at least four “generic” cases for each operation as well as the following “edge” cases:
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Value1 Operation Value2

0x6 SRL 0x2

0x6 SRA 0x1

0x6 SRA 0x2

0xF0000000 SRA 0x1

0x0 OR 0x0

0x0 OR 0xF

0xF OR 0xF

0x5 OR 0xA

0xA OR 0x5

0x0 XOR 0x0

0x0 XOR 0xF

0xF XOR 0x0

0xF XOR 0xF

0x5 XOR 0xA

0xA XOR 0x5

0x0 AND 0x0

0x0 AND 0xF

0xF AND 0x0

0xF AND 0xF

Note: The proper syntax for hexadecimal in VHDL is: x"F"

4. Using the testbench, perform both a Behavioral Simulation and a Post-Implementation Timing
Simulation. Check the results for accuracy.
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Exercise 1: Introduction to Vivado & Simple ALU

Student’s Name: Section:

Demo
Point
Value

Points
Earned

Date

Part 1:
4-bit
ALU

Behavioral
Simulation

4

Post-Synthesis
Timing Simulation

4

Schematic 4

Synthesis Report 4

Implementation
Report

4

Post-
Implementation

Timing Simulation
4

Hardware
Demonstration

4

Part 2:
32-bit
ALU

Behavioral
Simulation

16

Post-
Implementation

Timing Simulation
16

To receive any grading credit students must earn points for both the demonstration and the report.
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Exercise 1: Introduction to Vivado & Simple ALU

Report
Point
Value

Points
Earned

Comments

Abstract 5

Design Methodology 15

Results & Analysis 10

Conclusion 5

Source Code (Style) 5

Total for prelab, demo, and report 100
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Exercise 2 Register File

Objective

This exercise investigates the design of a register file for a FPGA. The objective of this exercise is
to implement, using VHDL, a digital system that is capable of storing multiple words, or groups
of bits, as well as understanding how to properly test such a design. VHDL files are created and
tested, both in simulation and in hardware.

Background

Computers need to be able to store and access information very quickly. However, simple digital
systems like D flip flops, by themselves, cannot hold enough information to be useful. Thus register
files are created that allow for one bus to access multiple locations, each which holds multiple bits.
In this exercise, there are two outputs, which allows for two addresses to be read from at the same
time, increasing the speed at which the necessary data can be obtained.

Prelab

• Draw a schematic of the register file following the specifications laid out below. It is not necessary
to show the inner works of each component, just how they are tied together to create the register
file.

• Review the use of generics in both entity declarations and instantiations.

• Print the sign off sheet.

Hardware Specification

The design must meet the following specifications and use all components listed at least once. Some
will be used multiple times.

Register Module

The register module has the following features (see Figure 2.1):

• Parameters:

– The size of the word to store, in bits. To be called n.

• Inputs (One bit unless noted otherwise):

– in (n bits): Parallel input to be stored.

– clk: Clock signal. Register file is rising edge triggered.

– we: Write enable. Enabling allows register contents to be written.

– rst: Resets the register to r. Asynchronous.

• Outputs:
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– out (n bits): Parallel output of the register module.

Consider using the behavioral style for the register module.

in

out

clk

rst

we

n

n

1

1

1

Register Module

3

3  rd1

 rd2

16

3

in

wr

1

1 rst

clk

we

1

16

16

out1

out2

Reg. File

Figure 2.1: Register Module

Multiplexer

Create an m-to-1 MUX, whose eight inputs are n bits wide. m is the number of register modules in
the file.

Decoder

Create an appropriately-sized decoder (i.e. if m = 8, the decoder would be 3-to-8). The input of
this decoder should not be written as separate signals, but instead as one multi-bit signal. This is
also true of the output.

Register File

The register file contains m register modules and follows a two-read, one-write format. See Fig-
ure 2.2.

• Parameters:

– The size of the word to store, in bits. To be called n. Default to 8

– The number of register modules. To be called m. Default to 8

• Inputs (One bit unless noted otherwise):

– rd1, rd2 (log2(m) bits): Read1 and read2. Selects which registers to read from.

– wr (log2(m) bits): Write. Selects which register to write to.
Note that the previous signals are log2(m) bits long, allowing them to address all m registers.

– in (n bits): Data to be written to the appropriate register.

– clk: Clock signal.

– we: Write enable. Enabling allows register contents to be written.

– rst: Resets all registers. Asynchronous.

• Outputs:

– out1, out2 (n bits): Parallel outputs containing the data from the selected registers.
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Hints

• Use the output of the decoder in conjunction with the register file’s we signal to drive the we on
the register module.

• Use two MUXs, one to connect the output of the register specified by rd1 to out1, and a second
for rd2 and out2.

in
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clk

rst
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n

n

1

1

1

Register Module

3

3  rd1

 rd2

16

3

in

wr

1

1 rst

clk

we

1

16

16

out1

out2

Reg. File

Figure 2.2: Register File

Testbench

Write a testbench to ensure that the register file is working properly. Some potential scenarios are
listed:

• Resetting the register file

– This should set all register modules to their reset value, r.

• Writing to each register module

– A for loop can be used to write to every register module by modifying wr.

• Reading from each register module

– Ensure that both rd1 and rd2 are tested.

This testbench must use assert statements to confirm proper functionality.

Lab Procedure

1. Create a new directory and Vivado project for this exercise.

2. Write a properly commented and properly formatted VHDL program according to the preceding
specifications.

3. Test the design using a behavioral simulation.
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4. Synthesize the design and test it using a Post-Synthesis Timing simulation.

5. Implement the design and test it using a Post-Implementation Timing simulation.

6. Prepare the design for hardware, following the procedure laid out in Exercise One.

7. Program the board and verify that it is working.

8. Demonstrate steps 3., 4., 5., and 7. to a TA or the instructor, who will sign the grading sheet.

9. Screen shot the appropriate waveforms for the report, making sure that they will be readable.

10. Submit the source code and report online to the appropriate myCourses dropbox.

Lab Report

Write a report that meets the rules of professional technical writing and follows the lab report
format on myCourses. Additional items that must be included:

• A block diagram of the design, which is not hand drawn and is not taken from the RTL schematic.

• Marked simulation results for all simulations.
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Exercise 2: Register File

Student’s Name: Section:

PreLab
Point
Value

Points
Earned

Comments

PreLab
Register File

Schematic
10

Demo
Point
Value

Points
Earned

Date

Demo

Behavioral
Simulation

15

Post-Synthesis
Timing

Simulation
5

Schematic 5

Synthesis
Report

5

Implementa-
tion

Report
5

Post-
Implementation

Timing
Simulation

5

Hardware
Demonstration

15

To receive any grading credit students must earn points for both the demonstration and the report.
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Exercise 2: Register File

Report
Point
Value

Points
Earned

Comments

Abstract 5

Design
Methodology

Block
Diagram of

Register File
3

Discussion of
Register
Module

Functionality

3

Discussion of
Register File
Functionality

4

Results &
Analysis

Behavioral
Waveform

3

Post-
Implementation

Waveform
3

Results
Description

4

Conclusion 5

Source Code (Style) 5

Total for prelab, demo, and report 100
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Exercise 3 Instruction Fetch Stage

Objective

In this exercise, students will be expected to design and create the Instruction Fetch stage of a
pipelined MIPS architecture. This will require making several different modules and connecting
them into a single Instruction Fetch stage. The Instruction Fetch stage is responsible for bringing
the program instructions from memory into the processor.

Pre-lab Activities

• Describe in a brief paragraph the role of the Instruction Fetch stage in a MIPS processor.

• Create a block diagram of the Instruction Fetch stage with all signals labeled, including the
internals of the Instruction Memory

Hardware Specification

Students will be creating the complete Instruction Fetch stage of the pipelined MIPS architecture,
highlighted in Figure 3.2

Figure 3.1: Pipelined MIPS Architecture
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Figure 3.2: Pipelined MIPS Instruction Fetch

Instruction Memory

The Instruction Memory module will hold all of the instructions which will be fetched by the
Instruction Fetch.

• Inputs (One bit unless noted otherwise)

– clk The system clock

– addr (28 bits) Address to read from

• Outputs (One bit unless noted otherwise)

– d out (32 bits) The instruction to be read from an instruction file at a specific address

Instruction Fetch

The Instruction Fetch module will incorporate the Instruction Memory module. The fetch will
fetch an instruction from memory at the address determined by the program counter, which should
increment and over time fetch all instructions from the memory.
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• Inputs (One bit unless noted otherwise)

– clk The system clock

– rst Active high reset. Asynchronous.

– Jump Active high bit which determines if the program is jumping

– JumpAddr (28 bits) Address to jump to if the program is jumping

– PCSrc (28 bits) Program Counter Source - the address that the Program Counter will start
at

• Outputs (One bit unless noted otherwise)

– PCNext (28 bits) Next Program Counter location

– Instruction (32 bits) The instruction which was fetched from memory

Lab Procedure

1. Create a new Project in Xilinx Vivado for the exercise

2. Write a properly commented and formatted VHDL program according to the preceding specifi-
cations.

3. Write a testbench which properly tests the full stage. The testbench must use assert statements
to be self-checking.

4. Test the design with a Behavioral Simulation. Make sure it includes the following:

• PC Incrementation

• Response to a Jump & behavior afterwards

5. Synthesize the design and test it using a Post-Synthesis Timing Simulation

6. Implement the design and test it using a Post-Implementation Timing Simulation

7. Program the board to verify its functionality using the provided constraints file

8. Demonstrate the above steps to a TA or Lab Instructor - ensure there are no warnings in the
Synthesis or Implementation.

9. Screenshot the appropriate waveforms for the report, making sure they are readable

10. Submit the source code and report online to the appropriate MyCourses dropbox

Lab Report

Write a report that meets the rules of professional technical writing and follows the lab format on
MyCourses. Additional items that must be included:

• A block diagram of the design, which is not hand drawn and is not taken from the RTL schematic

• Marked simulation results for all simulations

13
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Exercise 3: Instruction Fetch Stage

Student’s Name: Section:

PreLab
Point
Value

Points
Earned

Comments

PreLab

Description of
Instruction

Fetch
10

Instruction
Fetch/Memory

Block
Diagram

10

Demo
Point
Value

Points
Earned

Date

Demo

Behavioral
Simulation

10

No Warnings
in Synthesis

5

Post-Synthesis
Timing

Simulation
5

Schematic 5

Synthesis
Report

5

No Warnings
in Implemen-

tation
5

Implementa-
tion

Report
5

Post-
Implementation

Timing
Simulation

5

To receive any grading credit students must earn points for both the demonstration and the report.
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Exercise 3: Instruction Fetch Stage

Report
Point
Value

Points
Earned

Comments

Abstract 5

Design
Methodology

Block
Diagram of
Instruction

Fetch

4

Discussion of
Instruction

Memory
Functionality

3

Discussion of
Instruction

Fetch
Functionality

3

Results &
Analysis

Behavioral
Waveform

3

Post-
Implementation

Waveform
3

Results
Description

4

Conclusion 5

Source Code (Style) 5

Total for prelab, demo, and report 100
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Exercise 4 Instruction Decode Stage

Objective

In this exercise, the students will be expected to design and create the Instruction Decode stage
of a pipelined MIPS architecture. The Instruction Decode stage is responsible for parsing the
instructions passed from the Instruction Fetch stage into commands which the Execute step can
put into action.

Pre-lab Activities

• Describe in a brief paragraph the role of the Instruction Decode stage in a MIPS processor.

• Create a block diagram of the Instruction Decode stage with all signals labeled

Hardware Specification

Instruction Decode

The Instruction Decode stage takes a 32-bit op-code and decodes that code into full instructions.

• Inputs (One bit unless noted otherwise)

– Instruction (32 bits) The op-code for the instruction being decoded

– RegDataA (32 bits) Data from the first Register file

– RegDataB (32 bits) Data from the second Register file

• Outputs (One bit unless noted otherwise)

– Jump Bit determining whether or not to jump

– JumpAddr (28 bits) Address to jump to

– ALUOp (4 bits) Op-code specific to the ALU

– ValA (32 bits) First value for the ALU to act on

– ValB (32 bits) Second value for the ALU to act on

– MemWr Bit to tell if we are writing to the Memory

– MemRd Bit to tell if we are reading from Memory

– RegIdxA (5 bits) Index to access in first Register

– RegIdxB (5 bits) Index to access in second Register

– RegIdxWb (5 bits) Register index for WriteBack, also functions as destination register

– RegEnWb Bit that determines if a register is being written to
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MIPS Instructions

The MIPS instruction set is made of a number of 32-bit instructions, which can be broken down by
the Instruction Decode stage into smaller segments for different components to handle. There are
three types of instructions you will be asked to handle, R-type (Register Type), I-type(Immediate
Type), and J-type (Jump Type). Each has a slightly different format for the instructions.
The type of instruction is determined by the op-code of each instruction, which is always the first
6 bits.

Register Type Register Type instructions act upon 3 different registers, a source, target, and
destination. The function, which is the final 6 bits, determines which ALU operation is to be
executed with these registers. The shift amount (sh amt) is the amount to shift by when using a
shift command.
The Op-code for an R-Type instruction is “000000”

Table 4.1: R-Type

Op-code rs rt rd sh amt function

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Table 4.2: ALU Operations for R-Type

Function Code

ADD 100000
AND 100100

MULTU 011001
OR 100101
SLL 000000
SRA 000011
SRL 000010
SUB 100011
XOR 100110

Immediate Type Immediate Type instructions are functions which act upon a number stored
in a register and a 16 bit immediate. Unlike R-Type operations, the instruction op-code determines
both that this is an I-Type instruction as well as what operation is to be performed.

Table 4.3: I-Type

Op-code rs rt imm

6 bits 5 bits 5 bits 16 bits
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Table 4.4: ALU Operations for I-Type

Function Code

ADDI 001000
ANDI 001100
ORI 001101

XORI 001110
SW, ADD 001111
LW, ADD 100011

The SW, ADD and LW, ADD commands determine whether or not you are storing or loading a value
as well as adding.

Jump Type Jump Type instructions instruct the processor to jump to a specified address.

Table 4.5: J-Type

Op-code Addr

6 bits 26 bits

Table 4.6: Op-Codes for J-Type

Function Code

Jump 000010
Jump 000011

Both op-codes for the jump command will behave the same way in this case. This is not always
necessarily true, though.

ALU Codes The ALUOp output is only 4 bits; however, the part of the op-code which determines
the ALU operation is 6 bits. Table 4.7 contains the 4 bit op-codes for the ALU which will be needed
for R and I Type Instructions.

Table 4.7: 4-Bit ALU Op-Codes

Function Code

ADD/ADDI/SW,ADD/LW,ADD 0100
AND/ANDI 1010

MULTU 0110
OR/ORI 1000

XOR/XORI 1011
SLL 1100
SRA 1110
SRL 1101
SUB 0101
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Procedure

1. Create a new Project in Xilinx Vivado for the exercise

2. Write a properly commented and formatted VHDL program according to the preceding specifi-
cations.

3. Write a testbench which properly tests the stage. The testbench must use assert statements to
be self-checking

4. Test the design with a Behavioral Simulation

5. Synthesize the design and test it using a Post-Synthesis Timing Simulation

6. Implement the design and test it using a Post-Implementation Timing Simulation

7. Demonstrate the above steps to a TA or Lab Instructor

8. Screenshot the appropriate waveforms for the report, making sure they are readable

9. Submit the source code and report online to the appropriate MyCourses dropbox

Lab Report

Write a report that meets the rules of professional technical writing and follows the lab format on
MyCourses. Additional items that must be included:

• A block diagram of the design, which is not hand drawn and is not taken from the RTL schematic

• Area used, which is reported via number of occupied slices, FFs used, and LUTs used

• Marked simulation results
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Exercise 4: Instruction Decode Stage

Student’s Name: Section:

PreLab
Point
Value

Points
Earned

Comments

PreLab

Description of
Instruction

Decode
10

Instruction
Decode Block

Diagram
10

Demo
Point
Value

Points
Earned

Date

Demo

Behavioral
Simulation

15

Post-Synthesis
Timing

Simulation
5

Schematic 5

Synthesis
Report

5

Implementa-
tion

Report
5

Post-
Implementation

Timing
Simulation

5

To receive any grading credit students must earn points for both the demonstration and the report.
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Exercise 4: Instruction Decode Stage

Report
Point
Value

Points
Earned

Comments

Abstract 5

Design
Methodology

Instruction
Decode Block

Diagram
5

Discussion of
Functionality

8

Results &
Analysis

Behavioral
Simulation

3

Post-
Implementation

Timing
Simulation

3

Discussion of
Results

6

Conclusion 5

Source Code (Style) 5

Total for prelab, demo, and report 100
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Exercise 5 Execute Stage

Objective

In a MIPS processor, once an instruction has been fetched from memory and decoded it needs to
be executed. The execute stage consists of an ALU and several multiplexors, which determine how
the instruction being passed in is executed. For the purposes of this design, these multiplexors will
not need to be explicitly created.
First, in this exercise, the ALU that was begun in an earlier exercise will need to be completed
with a Ripple-Carry full adder/subtractor and a Carry-Save Multiplier. Next, once the ALU has
all of the required functionality, the complete execute stage must be created so that it can properly
interface with the previous stages.

Pre-lab Activities

• Draw a block diagram of the complete ALU, including the Ripple-Carry Adder/Subtractor and
Carry-Save Multiplier.

• Become familiar with the functionality of a multiplier. Consider what might need to be modified
to make it a generic size.

• Print the sign of sheet.

Hardware Specification

ALU

The full ALU has several different components. Most of these were created in previous exercises;
however, there are two more components which need to be added for full functionality: the adder/-
subtractor and the multiplier.
Once all operations have been created, Table 5.1 should be used to determine which operation is
being performed.

Table 5.1: 4-Bit ALU Op-Codes

Function Code

ADD/ADDI/SW,ADD/LW,ADD 0100
AND/ANDI 1010

MULTU 0110
OR/ORI 1000

XOR/XORI 1011
SLL 1100
SRA 1110
SRL 1101
SUB 0101

• Inputs (One bit unless noted otherwise)

– in1 (n bits) First input to the ALU
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– in2 (n bits) Second input to the ALU

– control (4 bits) The ALU Op-code

• Outputs (One bit unless noted otherwise)

– out1 (n bits) Output of the ALU

Ripple Carry Full Adder The full adder has the following features:

• Functions:

– Multi-bit addition.

– Multi-bit subtraction. Thus all multi-bit inputs and outputs are in two’s complement.

• Parameters:

– The number of bits of the two addends. To be called n.

• Inputs:

– A (n bits): First addend, or minuend if subtracting

– B (n bits): Second addend, or subtrahend if subtracting

• Outputs:

– Sum (n bits): Sum, or difference if subtracting

The ripple carry full adder must be structural, however, the full adders it is made up of can be
behavioral, dataflow, or structural. Use the for generate syntax to instantiate the individual full
adders inside of the ripple carry adder.

Carry Save Multiplier The multiplier has the following features:

• Functions:

– Multi-bit multiplication.

• Parameters:

– The output length, in bits. To be called n.

• Inputs:

– A (n/2 bits): First factor.

– B (n/2 bits): Second factor.

• Outputs:

– Product (n bits): Product. Note that this is twice as long as the factors.
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The carry save multiplier must be structural, however, the components of the multiplier do not
have to be. Figure 5.1 shows a four-bit carry save multiplier. Note that the rightmost adder
could be a half adder, as the carry in is set to zero. This multiplier functions in a similar way
to humans performing multiplication with two decimal numbers on paper. In order to implement
such a mutliplier, consider using an array of std logic vectors to hold the intermediate results
such as the results of the AND operation, sums, and carry outs. The use of the + and * operators
is not allowed.

Figure 5.1: 4-bit Carry Save Multiplier

Execute Stage

The execute stage of the MIPS processor takes the outputs from the Instruction Decode stage and
executes the appropriate instruction. A major part of this stage is the ALU - however, there can
be other components involved, depending on the design.

• Inputs (One bit unless noted otherwise)

– ALUOp (4 bits) Op-code specific to the ALU

– IdExA (32 bits) First value for the ALU to act on

– IdExB (32 bits) Second value for the ALU to act on, or - when not performing an ALU
Operation - it is the data which interacts with the Memory stage.

– IdExWbIdx (5 bits) Index for Memory WriteBack

– IdExWbEn Memory WriteBack Enable bit

– IdExMemRd Memory read bit

– IdExMemWr Memory write bit

• Outputs (One bit unless noted otherwise)

– MemWrData (32 bits) Data to be written to the memory stage
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– ALUResult (32 bits) Result of the ALU Operation

– ExMemWbIdx (5 bits) Memory WriteBack Index

– ExMemWbEn Memory WriteBack Enable bit

– ExMemRd Memory read bit

– ExMemWr Memory write bit

Procedure

Part 1 - Ripple-Carry Adder & Execute Stage

1. Create a new Project in Xilinx Vivado for the exercise

2. Write a properly commented and formatted VHDL program according to the preceding specifi-
cations.

3. Write a testbench which properly tests the ALU except the Carry-Save Multiplier

4. Test the design with a Behavioral Simulation

5. Synthesize the design and test it using a Post-Synthesis Timing Simulation

6. Implement the design and test it using a Post-Implementation Timing Simulation

7. Demonstrate the above steps to a TA or Lab Instructor

8. Reduce the number of bits for input to 4, and program the Basys3

9. Demonstrate the proper functionality to a TA or the Lab Instructor.

10. Screenshot the appropriate waveforms for the report, making sure they are readable

11. Create the Execute Stage for the MIPS Datapath - make the the ALU is the full size when
adding it to the stage

12. Write a testbench which properly tests the current functionality of the Execute Stage

13. Test the design with a Behavioral Simulation

• It is not required to synthesize or implement the design at this stage, though it is recom-
mended to ensure the correct functionality

This must be completed within the first week of the lab

Part 2 - Carry-Save Multiplier

1. Create the Carry-Save Multiplier

2. Write a testbench which properly tests the functionality of the Multiplier

3. Test the design with a Behavioral Simulation

4. Add the Multiplier to the rest of the ALU
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5. Test the completed design with a Behavioral Simulation by modifying the testbench created for
the ALU in Part 1

6. Synthesize the design and test it using a Post-Synthesis Timing Simulation

7. Implement the design and test it using a Post-Implementation Timing Simulation

8. Behaviorally test the completed Execute Stage

9. Demonstrate the above steps to a TA or Lab Instructor

10. Screenshot the appropriate waveforms for the report, making sure they are readable

11. Submit the source code and report online to the appropriate MyCourses dropbox

Lab Report

Write a report that meets the rules of professional technical writing and follows the lab format on
MyCourses. Additional items that must be included:

• A block diagram of the design, which is not hand drawn and is not taken from the RTL schematic

• Area used, which is reported via number of occupied slices, FFs used, and LUTs used

• Marked simulation results
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Exercise 5: Execute Stage

Student’s Name: Section:

PreLab
Point
Value

Points
Earned

Comments

PreLab
ALU Block

Diagram
10

Demo
Point
Value

Points
Earned

Date

Part 1 –
Adder&
Execut e
Stage

ALU Behavioral
Simulation

10

ALU Post-Synthesis
Timing Simulation

5

ALU Post-
Implementation

Timing Simulation
5

Hardware
Demonstration

8

Execute Stage
Behavioral
Simulation

2

Part 2 –
Multiplier

Multiplier
Behavioral
Simulation

8

Full ALU Behavioral
Simulation

2

Post-Synthesis
Timing Simulation

5

Post-
Implementation

Timing Simulation
5

Completed Execute
Stage Behavioral

Simulation
5

To receive any grading credit students must earn points for both the demonstration and the report.
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Exercise 5: Execute Stage

Report
Point
Value

Points
Earned

Comments

Abstract 5

Design
Methodology

ALU and
Execute Block

Diagrams
5

Discussion of
Functionality

5

Results &
Analysis

ALU and
Execute

Behavioral
Simulations

5

Post-
Implementation

Timing
Simulations

3

Discussion of
Results

2

Conclusion 5

Source Code (Style) 5

Total for prelab, demo, and report 100
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Exercise 6 Memory Stage

Objective

In this exercise, the Memory stage of the MIPS Datapath will be designed and implemented. The
purpose of this stage is to offer memory to the system which can be used for storing and loading -
depending on the command.

Pre-lab Activities

• Make a block diagram of the complete Memory Stage - including all signals to and from other
stages

• Review the use of assert statements in a Testbench

Hardware Specification

Data Memory

This memory should be very similar to the Instruction Memory used in the Instruction Fetch stage.
The values in the memory should be initialized, but this memory should be writable.

• Generics:

– mem size The size of the memory being used := 1024

• Inputs:

– clk Clock for the memory

– w en Write Enable for writing to Memory

– addr (28 bits) Address to write data to and read data from

– d in (32 bits) Data to be written to Memory

• Outputs:

– d out (32 bits) Data being read from addr

• Initial Values - Initialize the memory values at the following addresses to their corresponding
numbers. If an initial value isn’t given it can be set to any valid value.

Table 6.1: Initial Values for Memory

Address Value

0 X"ABCDDCBA"

137 X"C0FFEE12"

489 X"1A2B3C4D"

512 X"8F8F8F8F"

750 X"FEDCBA98"

1023 X"FFFF0000"

31



Memory Stage

The total Memory Stage for the MIPS Datapath. This should contain an instance of the Data
Memory and use a number of signals from previous stages to act on the memory.

• Inputs:

– clk System Clock

– ALUResult (32 bits) The result of the ALU from the Execute Stage

– MemWrData (32 bits) Data to be written to the Data Memory

– ExMemWr Memory Write bit from Execute Stage. Passes through to Writeback Stage

– ExMemRd Memory Read bit from Execute Stage. Passes through to Writeback Stage

– ExMemWbIdx (5 bits) Writeback index from Execute Stage. Passes through to Writeback
Stage

• Outputs:

– RegData (32 bits) Register Data from Execute Stage.

– MemData (32 bits) Data retrieved from Data Memory

– MemWr Memory Write Bit

– MemRd Memory Read Bit

– WbIdx (5 bits) Writeback index

Testbench

A testbench much be written which tests the following things:

• Reading the addresses corresponding with the initial values given in Table 6.1.

• Writing the values X"01010101" and X"55001122" to the addresses 18 and 256 respectively

For this testbench, assert statements must be used to confirm that cases stated above
work as expected.

Procedure

1. Create a new Project in Xilinx Vivado for the exercise

2. Write a properly commented and formatted VHDL program according to the preceding specifi-
cations.

3. Write a testbench which properly tests the stage

4. Test the design with a Behavioral Simulation

5. Synthesize the design and test it using a Post-Synthesis Timing Simulation

6. Implement the design and test it using a Post-Implementation Timing Simulation
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7. Demonstrate the above steps to a TA or Lab Instructor

8. Screenshot the appropriate waveforms for the report, making sure they are readable

9. Submit the source code and report online to the appropriate MyCourses dropbox

Lab Report

Write a report that meets the rules of professional technical writing and follows the lab format on
MyCourses. Additional items that must be included:

• A block diagram of the design, which is not hand drawn and is not taken from the RTL schematic

• Area used, which is reported via number of occupied slices, FFs used, and LUTs used

• Marked simulation results
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Exercise 6: Memory Stage

Student’s Name: Section:

PreLab
Point
Value

Points
Earned

Comments

PreLab
Memory Stage

Block
Diagram

10

Demo
Point
Value

Points
Earned

Date

Demo

Behavioral
Simulation

15

Post-Synthesis
Timing

Simulation
7

Schematic 6

Synthesis
Report

5

Implementa-
tion

Report
5

Post-
Implementation

Timing
Simulation

8

To receive any grading credit students must earn points for both the demonstration and the report.
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Exercise 6: Memory Stage

Report
Point
Value

Points
Earned

Comments

Abstract 5

Design
Methodology

Memory Stage
Block

Diagram
5

Discussion of
Functionality

8

Results &
Analysis

Behavioral
Simulation

5

Post-
Implementation

Timing
Simulation

5

Discussion of
Results

6

Conclusion 5

Source Code (Style) 5

Total for prelab, demo, and report 100
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Exercise 7 Writeback Stage

Objective

Pre-lab Activities

• Make a block diagram of the complete Writeback Stage - include where are signals are going
back to

Hardware Specification

Writeback Stage

• Inputs:

– MemWbIdx (5 bits) Writeback index

– MemWr Bit that determines whether or not to write in the writeback

– MemRd Bit that determines whether or not data was read from memory

– RegData (32 bits) Data passed in from a register. Used when not reading from memory.

– MemData (32 bits) Data passed in when read from memory. Gets written back if MemRd
is ’1’

• Outputs:

– WbData (32 bits) Data to be written back, either from Memory or from a Register

– WbIdx (5 bits) Writeback index

– WbEn Bit which determines if anything is written back. Nothing is written back when
writing to memory.

Procedure

1. Create a new Project in Xilinx Vivado for the exercise

2. Write a properly commented and formatted VHDL program according to the preceding specifi-
cations.

3. Write a testbench which properly tests the stage

4. Test the design with a Behavioral Simulation

5. Synthesize the design and test it using a Post-Synthesis Timing Simulation

6. Implement the design and test it using a Post-Implementation Timing Simulation

7. Demonstrate the above steps to a TA or Lab Instructor

8. Screenshot the appropriate waveforms for the report, making sure they are readable

9. Submit the source code and report online to the appropriate MyCourses dropbox
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Lab Report

Write a report that meets the rules of professional technical writing and follows the lab format on
MyCourses. Additional items that must be included:

• A block diagram of the design, which is not hand drawn and is not taken from the RTL schematic

• Area used, which is reported via number of occupied slices, FFs used, and LUTs used

• Marked simulation results
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Exercise 7: Writeback Stage

Student’s Name: Section:

PreLab
Point
Value

Points
Earned

Comments

PreLab
Writeback

Stage Block
Diagram

10

Demo
Point
Value

Points
Earned

Date

Demo

Behavioral
Simulation

15

Post-Synthesis
Timing

Simulation
7

Schematic 6

Synthesis
Report

5

Implementa-
tion

Report
5

Post-
Implementation

Timing
Simulation

8

To receive any grading credit students must earn points for both the demonstration and the report.
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Exercise 7: Writeback Stage

Report
Point
Value

Points
Earned

Comments

Abstract 5

Design
Methodology

Writeback
Stage Block

Diagram
5

Discussion of
Functionality

8

Results &
Analysis

Behavioral
Simulation

5

Post-
Implementation

Timing
Simulation

5

Discussion of
Results

6

Conclusion 5

Source Code (Style) 5

Total for prelab, demo, and report 100
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Appendix A Xilinx Vivado Tutorial

Objective

The following is a tutorial on how to create and test a simple VHDL design in the Xilinx Vivado
Design Suite. Vivado is a comprehensive software suite for FPGA development. It includes a source
code editor, synthesis tools, implementation tools, a simulator, and tools for loading a design onto
FPGAs.

Vivado WebPack edition is available for students, free of charge, as explained here.

• If you install Vivado to your personal computer, you will likely not be able to select the board
that we will be using for these labs. Follow the instructions here to add them: https://

reference.digilentinc.com/reference/software/vivado/board-files

Design

Here, we walk through the process of creating a Vivado project and design files. For this example,
we will create a dataflow design for an 4-bit partial arithmetic logic unit (ALU) capable of NOT
and Logical Left Shift (SLL) operations.

1. Project Creation Wizard

(a) Create a new project from either the “Quick Start” or “File” menu. This will launch the
project creation wizard. Click Next to get started.

(b) Project Name: Give the project a name of your choice and select a location with fast
storage (local disk is recommended). Click Next.

(c) Project Type: Select ”RTL Project.” Click Next.

(d) Add Sources:

(i) At the bottom of the window, select VHDL as your target language and simulator
language.

(ii) For each of the following components, click Create File, specify the file name, and
click OK.

(1) notN.vhd

(2) sllN.vhd

(3) alu4.vhd

(iii) Click Next to continue

(e) Add Constraints: Skip this step for now. Click Next.

(f) Default Part: Click Board, then select Basys3, then click Next.

(g) Click Finish to complete the project creation wizard.

2. Define Modules: This will pop-up when your project opens. It provides a GUI to automatically
generate entity declarations. We want to do this ourselves, so skip it by clicking OK. If you get
a warning about unchanged files, click Yes to ignore it.
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3. In the Sources panel, double-click on notN.vhd to open it. Copy the source code from Ap-
pendix B and save. Repeat this process for sllN.vhd and alu4.vhd with Appendix C and
Appendix D respectively. At the end of this process, your Sources panel should look like this:
Note: Copying from the pdf file can cause spacing issues and hidden characters. If you run into
problems that seemingly don’t make sense, you may need to type out the file. One way to mitigate
this is by downloading the manual and using something other than a web-browser to view it.

The tree now represents your hierarchical/structural design. This is helpful in understanding
the architecture of a design at a glance. However, if you ever want to see a flat list of files in
the project, click Compile Order along the bottom of the Sources panel.

Behavioral Simulation

A crucial step in the design process is testing whether or not your design provides the expected
functionality. The simplest way to do this is by creating a VHDL test bench and running a
behavioral simulation. This is an ideal simulation and does not account for any actual hardware.
However, it is the fastest type of simulation to run and the results are easy to read and parse.

1. Creating a Simulation Source

(a) From the Sources panel, click . This will launch the Add Sources wizard once again.

(b) Choose Add or create simulation sources. Click Next.

(c) Click Create File. Name it aluTB and clickOK. Then, from the wizard, click Finish.

2. Define Module: Once again, this wizard will pop up. Again, we can skip it by clicking OK
and then Yes.

3. From the sources panel, under Simulation Sources > sim 1, double-click on aluTB.vhd to
open it. Copy the source code from Appendix E and save your file.

4. To specify the length of the simulation, go to the Flow Navigator and right click on SIMULA-
TION. Click “Simulation Settings...”. Under the Simulation tab, set the value of xsim.simulate.runtime
to 740ns, like so:
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Click Apply, then click OK.

5. From the Flow Navigator, under SIMULATION, click Run Simulation. Then click Run
Behavioral Simulation.

6. Vivado should show a waveform of the simulation to to 200ns. Behavioral simulations are logical
only. As such, no design is synthesized and no hardware delays are incurred. Check to make
sure that all combinations of operations and operands produce correct results.

Synthesis & Post-Synthesis Simulation

Synthesis “compiles” your design into a gate-level netlist, represented by the UNISIM library, a
Xilinx library containing basic primitives. In this step, we will synthesize ALU design, check
the synthesis reports, view the register transfer level (RTL) diagram, and run a Post-Synthesis
simulation.

1. From the Flow Navigator, under SYNTHESIS, click Run Synthesis, then click OK. The
status indicator in the top-right of your screen should indicate that this process is running. This
could take a few minutes. Wait until the status indicator displays Synthesis Complete.

2. To simulate this model, go to Flow Navigator > SIMULATION > Run Simulation >
Run Post-Synthesis Timing Simulation. If given a warning, click Yes. The waveforms in
this simulation should include delays incurred by the gates in the model. As such, there should
be setup times for some signals and signals may change value multiple times before becoming
stable.

3. One debugging technique is to examine the RTL diagram of a design. To do this, under Flow
Navigator > SYNTHESIS > Open Synthesized Design, click Schematic. The RTL
schematic can be a useful debugging tool, as it shows the connections between internal compo-
nents of the synthesized design.
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4. One can determine the resource utilization under SYNTHESIS > Report Utilization. De-
termine how many Slice LUTs are used in this design.

Errors in this type of simulation stage are often (but not always) the result of a latch or some other
design flaw within a process.

NOTE: A functional simulation also tests the gate-level model, but does not account for delays.
The upside is that, due to predictable timing, it is easier to automate testing.

Implementation & Post-Implementation Simulation

Implementation places and routes your synthesized design into a model of the FPGA, allowing you
to simulate how your design will behave on the actual hardware.

1. From the Flow Navigator, under IMPLEMENTATION, click Run Implementation,
then click OK. The status indicator in the top-right of your screen should indicate that this
process is running. This could take a few minutes. Wait until the status indicator displays
Implementation Complete.

2. As with Synthesis, Implementation also generates a schematic. View it under Flow Navigator
> IMPLEMENTATION > Open Implemented Design > Schematic.

3. To view the resource utilization of the implemented model, go to Flow Navigator > IMPLE-
MENTATION > Open Implemented Design > Report Utilization. Note the number
of slice LUTS being used. Also note the number and types of slices being used.

4. To simulate this model, go to Flow Navigator > SIMULATION > Run Simulation > Run
Post-Implementation Timing Simulation. If given a warning, click Yes. The waveforms in
this simulation should include delays incurred by the gates in the model. As such, there should
be setup times for some signals and signals may change value multiple times before becoming
stable.

Again, errors in this type of simulation stage are often (but not always) the result of a latch or
some other design flaw within a process.

NOTE: A functional simulation also tests the implemented model, but does not account for delays.
The upside is that, due to predictable timing, it is easier to automate testing.

Hardware

In this step, we will load the partial ALU design onto a Basys3 FPGA development kit. To do this,
we will generate a “bitstream” file, which contains the necessary information for programming the
target device with the design.

1. Create Constraints

(a) In order to map ports on the top-level design to pins on the FPGA, a Xilinx Design

Constraints (XDC) file is required. To create one, click in the Sources panel.
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(b) Click Add or create constraints, then click Next.

(c) Click Create File, enter ”adc4” for the File name, click OK, then click Finish.

(d) Copy the contents of Appendix F to adc4.xdc. This will map SW3 through SW0 to Port
B, SW7 through SW4 to Port A, and SW15 to Port OP.

(e) Save the file

2. To generate the bitstream file, go to the Flow Navigator > PROGRAM AND DEBUG,
and then click Generate Bitstream and wait for that process to complete. You may be asked
to if you’d like to re-run the Synthesis and Implementation steps. If that dialog appears, hit
Yes.

3. After some time, the following message box should pop up:

Click OK to open the Hardware Manager.

4. Now connect your Basys3 to your workstation using a microUSB cable.

5. Flip the power switch SW16 up to turn on the device. Windows may take a few minutes to
install drivers for the device.

6. Near the top of the screen, you should see a green bar with the link Open target. Click that
link, then click Auto Connect.

7. The green bar should then show a link to Program device. Click it, then click Program.

8. At this point, the ALU design should be loaded onto the device. Test it by changing inputs
using the aforementioned switches. The output of the ALU is displayed via the four rightmost
LEDs.

9. Close Hardware Manager

10. Power off the Basys3 using SW16 and disconnect it from your workstation.
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Appendix B notN Source Code

----------------------------------------------------------------------------------

-- Company: Rochester Institute of Technology (RIT)

-- Engineer: <YOUR_NAME_HERE > (<YOUR_EMAIL_HERE >)

--

-- Create Date: <CREATION_TIME_HERE >

-- Design Name: notN

-- Module Name: notN - dataflow

-- Project Name: <PROJECT_NAME_HERE >

-- Target Devices: Basys3

--

-- Description: N-bit bitwise NOT unit

----------------------------------------------------------------------------------

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity notN is

GENERIC (N : INTEGER := 4); --bit width

PORT (

A : IN std_logic_vector(N-1 downto 0);

Y : OUT std_logic_vector(N-1 downto 0)

);

end notN;

architecture dataflow of notN is

begin

Y <= not A;

end dataflow;
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Appendix C sllN Source Code

----------------------------------------------------------------------------------

-- Company: Rochester Institute of Technology (RIT)

-- Engineer: <YOUR_NAME_HERE > (<YOUR_EMAIL_HERE >)

--

-- Create Date: <CREATION_TIME_HERE >

-- Design Name: sllN

-- Module Name: sllN - behavioral

-- Project Name: <PROJECT_NAME_HERE >

-- Target Devices: Basys3

--

-- Description: N-bit logical left shift (SLL) unit

----------------------------------------------------------------------------------

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

use IEEE.NUMERIC_STD.ALL;

entity sllN is

GENERIC (N : INTEGER := 4); --bit width

PORT (

A : IN std_logic_vector(N-1 downto 0);

SHIFT_AMT : IN std_logic_vector(N-1 downto 0);

Y : OUT std_logic_vector(N-1 downto 0)

);

end sllN;

architecture behavioral of sllN is

begin

process(A, SHIFT_AMT) is

variable int_shamt : integer;

begin

int_shamt := to_integer(unsigned(SHIFT_AMT ));

for i in N-1 downto 0 loop

if (i - int_shamt >= 0) then

Y(i) <= A(i - int_shamt );

else

Y(i) <= ’0’;

end if;

end loop;

end process;

end behavioral;
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Appendix D alu4 Source Code

----------------------------------------------------------------------------------

-- Company: Rochester Institute of Technology (RIT)

-- Engineer: <YOUR_NAME_HERE > (<YOUR_EMAIL_HERE >)

--

-- Create Date: <CREATION_TIME_HERE >

-- Design Name: alu4

-- Module Name: alu4 - structural

-- Project Name: <PROJECT_NAME_HERE >

-- Target Devices: Basys3

--

-- Description: Partial 4-bit Arithmetic Logic Unit

----------------------------------------------------------------------------------

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

use IEEE.NUMERIC_STD.ALL;

entity alu4 is

GENERIC (N : INTEGER := 4); --bit width

PORT (

A : IN std_logic_vector(N-1 downto 0);

B : IN std_logic_vector(N-1 downto 0);

OP : IN std_logic;

Y : OUT std_logic_vector(N-1 downto 0)

);

end alu4;

architecture structural of alu4 is

-- Declare teh inverter component

Component notN is

GENERIC ( N : INTEGER := 4); -- bit width

PORT (

A : IN std_logic_vector(N-1 downto 0);

Y : OUT std_logic_vector(N-1 downto 0)

);

end Component;

-- Declare the shift left component

Component sllN is

GENERIC (N : INTEGER := 4); --bit width

PORT (

A : IN std_logic_vector(N-1 downto 0);

SHIFT_AMT : IN std_logic_vector(N-1 downto 0);

Y : OUT std_logic_vector(N-1 downto 0)

);

end Component;

signal not_result : std_logic_vector (3 downto 0);

signal sll_result : std_logic_vector (3 downto 0);

begin
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-- Instantiate the inverter

not_comp: notN

generic map ( N => 4)

port map ( A => A, Y => not_result );

-- Instantiate the SLL unit

sll_comp: sllN

generic map ( N => 4 )

port map ( A=> A, SHIFT_AMT => B, Y => sll_result );

-- Use OP to control which operation to show/perform

Y <= not_result when OP = ’0’ else -- NOT

sll_result; -- SLL

end structural;
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Appendix E aluTB Source Code

----------------------------------------------------------------------------------

-- Company: Rochester Institute of Technology (RIT)

-- Engineer: <YOUR_NAME_HERE > (<YOUR_EMAIL_HERE >)

--

-- Create Date: <CREATION_TIME_HERE >

-- Design Name: aluTB

-- Module Name: aluTB - behavioral

-- Project Name: <PROJECT_NAME_HERE >

--

-- Description: Testbec\nch for Partial 32-bit ALU

----------------------------------------------------------------------------------

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

use IEEE.NUMERIC_STD.ALL;

entity aluTB is

end aluTB;

architecture Behavioral of aluTB is

--Declare the ALU component

Component alu4 is

PORT (

A : IN std_logic_vector (3 downto 0);

B : IN std_logic_vector (3 downto 0);

OP : IN std_logic;

Y : OUT std_logic_vector (3 downto 0)

);

end Component;

constant delay : time := 20 ns;

signal A, B, Y : std_logic_vector (3 downto 0) := (others => ’0’);

signal OP : std_logic := ’0’;

begin

-- Instantiate an instance of the ALU

alu_inst: alu4 PORT MAP (

A => A,

B => B,

OP => OP ,

Y => Y

);

data_proc: process is

begin

for i in 0 to 7 loop

wait for delay;

A <= std_logic_vector(unsigned(A) + 1);

end loop;

wait for delay;
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OP <= ’1’;

for i in 1 to 7 loop

A <= std_logic_vector(unsigned(A) + 1);

for j in 0 to 3 loop

wait for delay;

B <= std_logic_vector (( unsigned(B) + 1) mod 4);

end loop;

end loop;

wait;

end process;

end Behavioral;
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Appendix F Xilinx Design Constraints File

## Switches

set_property PACKAGE_PIN V17 [get_ports {B[0]}]

set_property IOSTANDARD LVCMOS33 [get_ports {B[0]}]

set_property PACKAGE_PIN V16 [get_ports {B[1]}]

set_property IOSTANDARD LVCMOS33 [get_ports {B[1]}]

set_property PACKAGE_PIN W16 [get_ports {B[2]}]

set_property IOSTANDARD LVCMOS33 [get_ports {B[2]}]

set_property PACKAGE_PIN W17 [get_ports {B[3]}]

set_property IOSTANDARD LVCMOS33 [get_ports {B[3]}]

set_property PACKAGE_PIN W15 [get_ports {A[0]}]

set_property IOSTANDARD LVCMOS33 [get_ports {A[0]}]

set_property PACKAGE_PIN V15 [get_ports {A[1]}]

set_property IOSTANDARD LVCMOS33 [get_ports {A[1]}]

set_property PACKAGE_PIN W14 [get_ports {A[2]}]

set_property IOSTANDARD LVCMOS33 [get_ports {A[2]}]

set_property PACKAGE_PIN W13 [get_ports {A[3]}]

set_property IOSTANDARD LVCMOS33 [get_ports {A[3]}]

set_property PACKAGE_PIN R2 [get_ports {OP}]

set_property IOSTANDARD LVCMOS33 [get_ports {OP}]

## LEDs

set_property PACKAGE_PIN U16 [get_ports {Y[0]}]

set_property IOSTANDARD LVCMOS33 [get_ports {Y[0]}]

set_property PACKAGE_PIN E19 [get_ports {Y[1]}]

set_property IOSTANDARD LVCMOS33 [get_ports {Y[1]}]

set_property PACKAGE_PIN U19 [get_ports {Y[2]}]

set_property IOSTANDARD LVCMOS33 [get_ports {Y[2]}]

set_property PACKAGE_PIN V19 [get_ports {Y[3]}]

set_property IOSTANDARD LVCMOS33 [get_ports {Y[3]}]

set_property PACKAGE_PIN W18 [get_ports {Y[4]}]

set_property IOSTANDARD LVCMOS33 [get_ports {Y[4]}]

set_property PACKAGE_PIN U15 [get_ports {Y[5]}]

set_property IOSTANDARD LVCMOS33 [get_ports {Y[5]}]

set_property PACKAGE_PIN U14 [get_ports {Y[6]}]

set_property IOSTANDARD LVCMOS33 [get_ports {Y[6]}]

set_property PACKAGE_PIN V14 [get_ports {Y[7]}]

set_property IOSTANDARD LVCMOS33 [get_ports {Y[7]}]

## Configuration options , can be used for all designs

set_property CONFIG_VOLTAGE 3.3 [current_design]

set_property CFGBVS VCCO [current_design]
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