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Abstract

Cryptography has become an important element of everyday life and is used across a wide
array of fields. At the center of many popular cryptosystems, prime numbers are the basis of
their security. Many cryptosystems use prime numbers for text hashing, and encryption key
generation, both public and private. Since non-prime numbers have a chance of creating the
same modulo output when factored (even extremely large numbers) it can lead to hashing
collisions and encryption key weaknesses. Modern cryptography schemes, such as RSA,
require prime numbers that are at least 2048-bits long, and the suggested length is even
moving towards 2592-bits. In order for an encrypted piece of data to remain secured, a
different prime number should be used for every set of transactions. Doing this means that if
a single encryption key is discovered /leaked, a malicious party can only decrypt few messages.
This leads to an issue with large data providers in which thousands, or even millions, of prime
numbers must be generated in rapid succession for upcoming data transfers. This is a very
computationally expensive process. The goal of this project is to explore the use of GPUs,
specifically using NVIDIA’s CUDA APIs, to generate large prime numbers rapidly in a way
that CPUs cannot.

Procedure

There are many algorithms that can be used to test for primality; however, this project will
only focus on a specific one. The algorithm in question is the Miller-Robin primality test.
The Miller-Robin test will discover whether a number has a high probability of being prime,
while being significantly faster than checking all possible factors of said number. However,
it cannot guarantee the number is prime; therefore, multiple Miller-Rabin trials are run for
each prime candidate to ensure a high probabilty of correctness. The Miller-Robin primality
test is implemented using the pseudocode shown in Listing [1]}

The Miller-Rabin test is based on the Fermat primality test, which states that for any prime
number ‘p’, and any number ‘a’ that is not divisible by ‘p’ then: ‘a? —1 mod p = 1. This
theorem will always return ‘1’ for a prime number; however, it may sometimes return ‘1’
for composite numbers. To ensure that a number is prime, the test should be performed
multiple times with different values of ‘a’. If the result is ‘1’ for every value of ’a’ that was
tested, the prime ‘p’ has a very high probability of being prime.

Miller-Rabin was chosen for this project because it has a time complexity that is polynomial,
meaning that once a prime candidate grows to a very large size, the time complexity of the
text won’t grow as much as a standard trial division which grows exponentially with the
digits of the number.



1 function miller rabin (prime, trials)
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if (prime < 2) return false

if (prime != 2 and is_even(prime)) return false

#Place prime into the following form 27c * d = prime - 1

d = prime - 1 #The odd factor

c=0 #Twos factor of prime
while(is_even(d)) // Factor the twos out of d
d >>=1
c +=1

#Trial Loop
while(trials -= 1)
a = rand(2 to prime-2)
x = a"d ’ prime #powmod
if (x == 1 or x == prime - 1)
continue
for (q =1, q < c, g++)
X = x 2 7, prime #powmod
if (x == prime - 1)
continue trial_loop
return NOT_PRIME
return PRIME

Listing 1: Miller-Rabin Pseudocode



Multi-Precision Arithmetic

Given that the numbers used for cryptography prime numbers are very large, to the tune of at
least 1024 bits, multi-precision arithmetic must be used. Multiprecision (MP) numbers and
arithmetic are the combination of multiple smaller numbers to store a much larger number
than each of the smaller numbers can hold. Using a 1024-bit number as an example, on a
32-bit system, sixteen, 32-bit integers (digits) are used to store the 1024-bit number; with
the least significant digit (LSD) storing the values 0 to 232 -1 and the second LSD storing
232 to 264-1, etc... While it sounds trivial, multiprecision arithmetic is very difficult to
implement since all hardware operations must be performed by a software implementation.
The issue with implementing multi-precision mathematics for a system like CUDA is the
handling of carry results from operations. It’s possible to generate a carry result in nearly
all arithmetic operations, and these results must be added onto the next operation in order
to maintain proper results. In the case of adding and subtracting, the carry is as simple as
a single bit, which can be added onto the addition/subtraction operation on the next digit
of the large number. Larger operations such as multiplication can generate carries that are
as large as the number itself, e.g.: a 32 multiplication generates a 32-bit result (low) and a
32-bit carry (high). This means that for every multiplication that occurs, double the original
size must be available for storage, and this carry must be propagated across all digits of the
MP number. The propagation of carries has to happen with every digit, and each digit relies
on the previous digit’s result, meaning that these operations have to happen in serial for
the most part. Certain operations, such as multiplication can occur partially in parallel,
since each digit of the multiplicand can be handled by a different thread; however the semi-
products must be added together serially since the carries are propagated through every
digit, just like with addition and subtraction. With division operations, each division row
relies on the result of the previous row, meaning that even though each row could possibly
be done partially in parallel (the multiplication operation occurs here), the final result would
still have to be serially processed.

Cuda Implementation

Since many of the operations had to be done in serial anyway, all operations were imple-
mented to run on a single processing device (thread) in a serial manner. This meant that
while the operations themselves could not be parallelized, multiple operations could occur
simultaneously across multiple threads. This is the basis in which the CUDA code is writ-
ten. For this implementation, each MP number is stored in BCD form, meaning that each
base-10 digit is stored as a separate value. Each base-10 digit is stored in an 8-bit value.
The reasoning behind this is two-fold:

1. It’s easier to implement and understand since humans do math in base-10

2. It allows for large carry results (multiplication) to not be lost. Since each base-10 digit
only requires the 4 least significant bits, the most 4 most significant bits are used when
multiplication occurs, so no data is lost/overflowed.

The downside of this approach is also significant:



1. Storing each MP number takes significantly more memory to store than its bitwise
counterpart. Since only 10 of the possible 127 positive values are stored in each 8-
bit digit, the storage efficiency is at best 7.87% per byte. As an example: a 2048-
bit number requires 64 bytes of information, and 128 bytes if using multiplication
operations. Storing 2048-bits in base-10 BCD requires at least 617 bytes, and 1234
bytes if multiplication is used. Plus a few additional bytes for keeping track of sign,
and digit depth.

2. Math is less efficient. Performing math on BCD is a lot less efficient than on standard
data because of the increased number of digits. Again, using 2048-bits as an example.
A standard 2048-bit number using 32-bit digits would require 64 digits to represent,
meaning that operations would only require 64 iterations for carry propagation. With
a 2048-bit BCD number, the 617 digits to represent the number would require 617
iterations of carry propagation.

Standard implementations of every basic arithmetic operation were implemented, addition,
subtraction, multiplication and division. The specifics of how each was implemented will be
left out of this report, but the implementation of each was the “long” version that’s tradi-
tionally used to find results by hand. A few optimizations were made to each operation to
make the execution faster, one common was the number of digits stored in each MP number.
While each MP number had the ability to store nearly infinite (memory dependent) digits,
not every digit would be used if the number was smaller, e.g.: adding ‘two’ to a larger num-
ber. To speed up computations, the number of digits being actively utilized for each number
was kept track of so fewer iterations could be used for mathematical operations if possible.

In order to implement Miller-Rabin a few extra functions had to exist for use with MP
numbers. Namely, this included a modulus function, and a powmod function. The modulus
function was written by slightly modifying the division function to return the remainder
as well as the quotient, and just throwing away the quotient. The powmod function is a
compound operation that performs the following calculation: x¥ mod p. The issue with
the powmod function is its inefficient computational speed when using a standard exponent
followed by a modulus operation. Knowing this, the powmod function was implemented using
a different method known as right-to-left binary exponentiation. The pseudocode for this
implementation is shown in Listing

To avoid dividing by two, an additional bit shift function was created to “shift” the BCD
numbers right one bit. Since the BCD numbers couldn’t be shifted right traditionally, each
digit (starting at the MSD) was shifted one bit to the right, and if the least-significant bit
was ‘1’ before the shift, a value of ‘10’ was added to the next less significant digit. The
outcome of this shift, while less efficient than a standard bit shift, was much more efficient
than running a divide operation.

Miller-Rabin Implementation

With all of these operations possible for MP numbers, performing the Miller-Rabin primality
test with MP numbers could be done by porting the Pseudocode in Listing |1 to using multi-
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1

function powmod (base, exponent mod)
result = 1
while (exponent != 0)
if (is_odd(exponent))
tmp = base * result
result = tmp 7 mod
tmp = base * base
base = tmp 7 mod

exponent >>= 1

Listing 2: powmod pseudocode implementation

precision operations instead. Since the CUDA implementation required many operations
to occur in parallel for efficient execution, each CUDA thread within a block performed a
“trial” of Miller-Rabin. Considering there are 32 CUDA threads per warp, the block size was
always a multiple of 32; however, this block size could be changed dynamically at compile
time. Since there were 32 threads per Miller-Rabin test, thirty-two primality trials were
performed on each prime candidate. Every block within the GPU shared a prime candidate,
which was stored in shared memory for all threads to access. Each of the random numbers
used for a trial was generated on the CPU and sent to the GPU at the start of the program.
The CUDA threads “treated” their own trial number to fit within the required range, from
2 to the prime number minus 2. The execution diagram of the CUDA code per block is

illustrated in [Figure 1]

Certain operations were only performed on a single CUDA thread because it was a block-wide
operation that was only completed once. During this process all other threads were stalled
until the thread finished. The most significant portion of this code was the factoring of the
value ‘prime - 1’ into ‘2°* d’, and preliminary prime checks. These basic preliminary checks
were used to speed up operation by avoiding the costly Miller-Rabin trials that contained
powmod calls. The primality checks that occurred were testing if the prime candidate was less
than 1 (including negative) or even, in which case the number was known to be composite. If
the number was either ‘2’ or ‘3’, it was known to be prime. If any of these tests returned, that
result of that prime test could be written and the next prime could be tested. To determine
the primality of a number based on all thread trials, a shared ‘flag’” variable was used in each
block, with the initial value of the flag set to ‘0’ If any thread completed a Miller-Rabin
test and had the result of composite, it would set the value of the flag to ‘1’ using an atomic
operation. This way, once all threads were complete, if the value of the flag was not ‘0,
then the value was not a prime. The GPU notified the CPU if a number was prime by
setting all non-prime candidates to zero, and keeping the value of all prime number candi-
dates. This meant that once the CUDA code completed, the list of candidates could be sent
back to the CPU, and the CPU would know which values were prime, since all others were ‘0’.



CUDA Block
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Figure 1: Block Execution Diagram

One of the issues encountered while processing large prime numbers was the lack of stack
space per GPU thread. It was found that for any MP number, the storage required to run
Miller-Rabin was four times the size of the number. This is because in the powmod function,
the result of a multiplication was then multiplied by itself. The original multiplication dou-
bled the storage size, and the second multiplication doubled that. This meant that for a
2048-bit number, the 617 digits actually required at least 2468 digits (bytes) of storage. In
certain MP operations, there are two or three temporary MP variables to store intermediate
results. With sizes this large, the stack size of each CUDA thread was overwhelmed. To
fix this problem, a multi-precision stack type was created. This stack was allocated in main
GPU memory, and was accessed by each thread for certain computations. Each thread had
access to its own stack, and each stack had a depth of 15 MP values. This way, multi-
precision operations that required temporary values could “push” a value onto the stack by
pointing an MP pointer to the current stack pointer index. After each “push” the stack
pointer was incremented, and at the exit of each function, the stack pointer was subtracted
to “pop” the values off the stack.

To benchmark the code, the same implementation was run on both the CPU and GPU, the
only difference being that the CPU ran multiple trials of Miller-Rabin at once instead of
splitting each trial across a different core. Both the CPU and GPU contained randomized
numbers for both prime candidates and MR trial numbers. The number of trials chosen
for each prime number was 32. This was because of the thread architecture mentioned



previously, but also because of the accuracy that 32 trails gives. Each Miller-Rabin trial has
a 25% chance to miss a non-prime for each trial, so with 32 trials, the chance of misclassifying
a composite as prime was 0.25%% ~ 5.42 x 1072, The size of the primes chosen for this test
were 512-bits (154 digits), and 64-bits (20 digits). The reason 512-bit primes were chosen
over larger primes such as 1024 or 2048-bit primes is due to the limited amount of memory
available on the GPU. A random 1024-bit number has around a 1/9000 chance of being a
prime number, and 9000 trials with 1236-digit numbers required 6 GB of memory, which
was too much for the GPU being tested, since around 2 GB of the 8 GB of GPU memory
was used for other programs running on the testing computer.

Results

For the 512-bit test, 1280 prime candidates were chosen for testing on both the CPU and

GPU, the results of which are shown in and [Figure 3| The CPU tests were
performed on an i7-4930k (overclocked to 4.3 GHz) and the GPU operations were performed

on a GTX 1070, with 8 GB of VRAM. shows the average results of multiple 512-bit
primality tests. Each trial performed primality testing of 1280 different random numbers.

Table 1: 512-bit Prime Finding Test Results

Device | Average Time (s) | Average Primes Found
CPU 1735.88 5/1280
GPU 913.72 5,/1280

Memory Usage statistics:
- MP Stack: 10 KB
- Primes: 785 KB
Generating prime attempts ...
Running kernel ..
7223105765386161413956822260791624956642283011154651534972062326733307825127452839984584800235618168042676513917935585967281784512627806770061974733441263

83746910747287761258535989709629995707791719697034880378540! 83372201611 1776382725066, 77057737476159186458034192571781606572231076107
368224403095866919677915590854813855415827523117394018787764367643306108871114046569337223671647977580667908504170205949437591200271239941002431562258221
8865504118793231096478923835629705477808979295514274066562354227964677764606359077405272607321019686374034890799651479869794015975834458939128013472378447
Elapsed Time: 1738.88s

Figure 2: CPU Results for 512-bit prime test

Memory Usage statistics:
- Per Thread: 11 KB
- Mp Stack: 10 KB
- Prime: 628 Bytes
- Random: 628 Bytes
- Per Block: 334 KB
- MP Stack: 295 KB
- Prime: 20 KB
- Random: 20 KB
- Per GPU: 370 MB
- MP Stack: 369 MB
- Prime: 785 KB
- Random: 785 KB
Generating prime attempts ...
Generating prime trials ...
Running kernel
96397401891775367930534242785227956616727895623516768112669812081879158339207652941752058162562869785830782447861959374292649837027701999135831227184725083
9528356801414301599152733213469331368141202732803918201734072125481597647030430823666030668072420692356159394676963766622632186145570107268628534812696181
6187105237173055277281116958575103036581301816343064105012062582088866015106042241871472608848379155056487271527804944133110047172660428378440320715348951
4827038014590526204782182220282694517430099244984552882226257436197052171207687043443786303076887704011341301035501060722049850649043407559672432740914131
38152492451528645195003375326650665026261443400038749198652217473186724968238 81371124631 057146476820048406730196539264509203842744771613406629
512872873757602282359521649406750157334702674815240302688628495411464057416917662602060044884357613119062676332591719913414641732243349828451612903126487
Found 6 primes out of 1280 numbers tested
Elapsed Time: 987.0365

Figure 3: GPU Results for 512-bit prime test

These images show demo outputs of the Miller-Rabin programs with 512-bit primes and 1280
total prime candidates. After execution, the values of all the discovered prime numbers were



printed to the console for viewing. Memory statistics of each program was also printed at the
beginning of the execution to show the memory impact each program had on the computer.
On average, with 512-bit prime numbers, the GPU provided a 1.9 times speedup over the
CPU.

The same test was run again, but with 20 digits primes (64-bits) and 25,600 total prime
candidates tested. shows the average results from these tests.

Table 2: 64-bit Prime Finding Test Results

Device | Average Time (s) | Average Primes Found
CPU 92.11 721/25600
GPU 913.72 719/25600

The results of the 64-bit prime number test shows that the GPU offered, on average, a 2.66
times speedup over the CPU. With Miller-Rabin, the suggested number of trials for a 64-bit
number is 12, with each trial being a prime between 2 and 37 (2, 3, 5, 7, 11, 13, 17, 19, and
23). Due to the unique situation of the GPU architecture, it was more efficient to keep the
number of trials at 32 since the execution would take just as long.

The results of these two test sets show where the strength of the GPU comes into play. Since
the GPU tests all trials within Miller-Rabin at once, it’s effectively taking as long as a single
trial. However, since each GPU core is less performant than that of a CPU, the time it takes
for each trial is much longer. This is overcome by providing more prime candidates to the
GPU, which will give it a higher utilization for longer, allowing it to outperform the CPU.
The performance gain of the GPU began to slow down as the numbers got larger, with this
being due to extra thread divergence in numbers with more digits. The solutions to this are
discussed in the following improvement discussion section.

Improvement Discussion

The limiting factor for GPU performance was the execution efficiency of the multi-precision
(MP) implementation. This could be improved in a variety of ways:

1. Currently, the BCD storage format used to store the MP numbers is set up in base-10.
While this makes it easier to understand and write, it is far less efficient than power-
of-two bases. Changing the BCD to use a power-of-two base would more efficiently
take advantage of the available bits in the BCD, and would make operations such as
bit shifting much more efficient since bits could be manipulated quickly without the
need for base-10 carry and remainder logic. This also means that for carry calculations
in addition, subtraction, and multiplication operations, the modulo operator could be
replaced with a simple bitwise-AND, vastly speeding up the execution of each cycle.

2. The storage efficiency and serial execution paths could be reduced by increasing the
storage size of each digit. Moving from 8-bits per digit to 32-bits per digit would allow
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for a base of 65536, solving the problem listed in #1, and would also reduce the number
of digits required. Not only would this reduce the number of bytes required to store a
large number, but it would also increase the efficiency of each calculation since there
would be less digit iterations for arithmetic and carry propagation.

3. The most effective speedup would occur by not limiting the number of iterations per-
formed for each arithmetic operation. For example, adding 2 and 32 would only require
two iterations over the digits since the larger operand, 32, only requires two digits for
storage. Initially this was done to increase the performance of single core environ-
ments, but in a many-core environment like CUDA in which each thread in the same
warp needs to process the same instruction for maximum efficiency, it actually slows
down the execution. This slow down is due to divergence that occurs when each
thread has a slightly differently sized number. The current solution is placing common
__syncthread () calls after every operation, but this is slow and can possibly hang the
program if used carelessly. Instead of limiting the number of digits for each operation,
every single operation should be performed on every digit of an MP number, not just
the populated ones. While it would take longer for single-threaded environments, it
would be much faster in CUDA since the threads wouldn’t have to diverge at all. The
performance impact of this would also be minimized if the two prior improvements
were made first, which would improve the efficiency of each digit, and would reduce
the total number of digits required.

4. Finally, a few software optimizations could be made to improve the performance. A
few optimizations already exist, like checking for even numbers. Instead of running an
expensive modulo operation, a simple ‘even’ function is used to check if the ‘0" bit of
the least expensive digit is set, if so, that number is odd. Another optimization would
be running powers of two through bit shifts instead of the power or multiplication
functions like they currently are. The largest optimizations would happen within the
division operation, which could be greatly improved to perform checking on whether
a bit shift could be used instead of a pricey division operation. These optimizations
however, could cause divergence to occur within CUDA threads, meaning that they
should be used sparingly, and only after extensive performance testing.

Conclusion

In conclusion, the results were promising, with the GPU providing a sizable speed boost over
the CPU for large prime number generation in modern cryptography systems. However,
once multithreaded, the CPU would easily outperform the GPU. This is largely due to
the thread divergences that happen within the CUDA code, forcing the GPU to run the
code sequentially. The solution to this could be solved through improvements to the multi-
precision operational flow, and would provide more efficient execution on the GPU with less
divergence. Knowing this, it shows that GPUs can provide a viable option for increasing the
efficiency in prime number generation for modern cryptosystems.
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